El artículo titulado «Resisting subsidence with a truss Implant: Application of the ‘Snowshoe’ principle for interbody fusion devices» propone una solución para prevenir el hundimiento (subsidence) en dispositivos de fusión intervertebral. El hundimiento ocurre cuando un implante colocado entre las vértebras de la columna se desplaza o se hunde en el hueso circundante, lo que puede comprometer la estabilidad y el éxito del procedimiento.
En el estudio, los investigadores presentan un diseño de implante único inspirado en el principio de la «raqueta de nieve» (Snowshoe en inglés). Este diseño utiliza una estructura tipo truss (retícula) en lugar de la típica forma sólida de los implantes tradicionales. La retícula permite distribuir la carga aplicada en la columna de manera más uniforme, reduciendo así el riesgo de hundimiento.
Los autores del estudio realizaron pruebas y simulaciones para comparar el implante con diseño de truss con los implantes convencionales. Los resultados mostraron que el implante basado en el principio de la «raqueta de nieve» resistía mejor el hundimiento y proporcionaba una mayor estabilidad a largo plazo.
En conclusión, el artículo sugiere que el uso de un diseño de implante inspirado en la «raqueta de nieve» podría ser una solución prometedora para mejorar los resultados de la fusión intervertebral al reducir la posibilidad de hundimiento y mejorar la estabilidad de la columna.
3D-printed spinal implant surpasses traditional cage in resisting subsidence, promising improved outcomes. Read our latest paper revealing the superior performance of truss cages over annular cages.#biomechanics#journalofbiomechanicshttps://t.co/DF20dO0qfM pic.twitter.com/dlHEl1hkAi
— Journal of Biomechanics (@JBiomech) July 17, 2023
El objetivo principal era comparar las propiedades de resistencia al hundimiento de un nuevo implante de titanio intersomático espinal impreso en 3D frente a una caja anular polimérica predicada. Evaluamos un dispositivo de fusión intersomática espinal impreso en 3D que emplea características bioarquitectónicas basadas en trusses para aplicar el principio de raqueta de nieve de contacto de longitud de línea para proporcionar una distribución de carga eficiente a través de la interfaz implante/placa terminal como medio para resistir el hundimiento del implante. Los dispositivos se probaron mecánicamente utilizando bloques de hueso sintético de diferentes densidades (osteoporótico a normal) para determinar la resistencia correspondiente al hundimiento bajo carga de compresión. Se realizaron análisis estadísticos para comparar las cargas de hundimiento y evaluar el efecto de la longitud de la jaula en la resistencia al hundimiento. El implante truss demostró un marcado aumento rectilíneo en la resistencia al hundimiento asociado con un aumento en la interfaz de contacto de la longitud de la línea que se corresponde con la longitud del implante independientemente de la tasa de hundimiento o la densidad ósea. En bloques que simulaban hueso osteoporótico, comparando la jaula de truss de menor longitud con la de mayor longitud (40 vs. 60 mm), la carga de compresión promedio necesaria para inducir el hundimiento del implante aumentó en un 46,4 % (383,2 a 561,0 N) y 49,3 % (567,4 a 847,2 N) para 1 y 2 mm de hundimiento, respectivamente. Por el contrario, para las jaulas anulares, solo hubo un modesto aumento en la carga de compresión al comparar la jaula de longitud más corta con la de longitud más larga a una tasa de hundimiento de 1 mm. Las jaulas de armazón Snowshoe demostraron una resistencia sustancialmente mayor al hundimiento que las jaulas anulares correspondientes. Se requieren estudios clínicos para respaldar los hallazgos biomecánicos en este trabajo.
Kiapour A, Massaad E, Kodigudla MK, Kelkar A, Begley MR, Goel VK, Block JE, Shin JH. Resisting subsidence with a truss Implant: Application of the «Snowshoe» principle for interbody fusion devices. J Biomech. 2023 Jun;155:111635. doi: 10.1016/j.jbiomech.2023.111635. Epub 2023 May 13. PMID: 37216894.